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It has been ten years since Stephen Wolfram published his magnum opus A
New Kind of Science [14]. It is worth re-examining the book and its impact in
the field.

1 Highlights of ANKS

The present author personally read the book with great interest when it was first
published. Of particular interest then and now are the many illustrations, par-
ticularly those of the complex patterns generated by certain cellular automata
systems, such as rule 30 and rule 110, as contrasted with the very regular pat-
terns produced by other rules. In this regard, graphical analyses of these cellular
automata rules join a select group of modern mathematical phenomena (includ-
ing, for example, studies of the Mandlebrot set, chaotic iterations and certain
topological manifolds) that have been studied graphically as well as analytically.

In looking again at ANKS, the present author is struck today, as in 2002,
with the many interesting items in the endnote section, which occupies 350
pages of two-column, small-font text. In some respects, the endnotes of ANKS
constitute an encyclopedia of sorts, covering, in concise yet highly readable form,
historical background, mathematical foundations and scientific connections of a
wide variety of topics related to modern-day computing. Much of this material
remains as cogent and interesting today as when it was written over ten years
ago. Some of the particularly interesting endnote passages are the following:

1. Wolfram’s entry on “History of experimental mathematics” (pg. 899) con-
tains a number of interesting insights on the practice of using computers
as exploratory tools in mathematics.

2. In his entry “Randomness in markets” (pg. 1014), Wolfram notes that
in modern-day financial markets, large price fluctuations are significantly
more common than a Gaussian distribution would imply—a phenomenon
amply affirmed in the 2007–2009 worldwide financial crash.
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3. Under “Einstein equations” (pg. 1052–1054), Wolfram presents a brief and
yet informative introduction to the equations of general relativity, together
with some interesting computational perspectives in the general arena of
relativity and cosmology.

4. Under “Quantum phenomena” (pg. 1056–1065), Wolfram presents an even
more detailed overview of quantum mechanics, including an introduction
to Feynman diagrams, quantum field theory and Bell’s inequality, all with
interesting connections to computation.

5. Under “Data Compression” (pg. 1069–1074), Wolfram includes numerous
details of state-of-the-art data compression algorithms.

6. Beginning with a series of articles under the heading “Undecidability and
Intractibility” (pg. 1136–1149), Wolfram presents a fairly technical but
nonetheless quite coherent introduction to many of the topics of mod-
ern theoretical computer science, including undecidability, computational
complexity, Turing machines, NP-completeness and quantum computers.

7. Immediately following the material on theoretical computer science is a
similarly detailed introduction (pg. 1149–1177) to modern developments
in the foundations of mathematics, with implications for computing.

8. In a fascinating section “Intelligence in the Universe” (pg. 1177–1191),
Wolfram discusses such topics as the origin of life, extraterrestrial life,
the nature of animal and human intelligence, Fermi’s paradox and spec-
ulations, from a computational point of view, as to why our search for
extraterrestrial intelligence so far as been unsuccessful.

2 Experimental mathematics

With regards to item 1 in the list above (experimental mathematics), it is worth
pointing out that while Wolfram is very well versed in rigorous mathematical
proof, nonetheless he confesses (pg. 899), “by now I have come to trust the
correctness of conclusions based on simple systematic computer experiments
much more than I trust all but the simplest proofs.” Wolfram laments the fact
that so few others in the field of modern-day mathematics are willing embrace
this computational-experimental paradigm (pg. 899):

[E]ven now, unlike essentially all other branches of science, main-
stream mathematics continues to be entirely dominated by theoreti-
cal rather than experimental methods. And even when experiments
are done, their purpose is essentially always just to provide another
way to look at traditional questions in traditional mathematical sys-
tems.

Fortunately, this is one arena where substantial progress has been made in
the past ten or fifteen years. Nowadays many research mathematicians use the
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computer to manipulate symbolic expressions, generate sequences, visually in-
spect numerical data, check analytical work, compute expressions to very high
numeric precision, and otherwise explore the mathematical universe using the
latest computer technology. This trend has been greatly facilitated by contin-
uing improvements in Mathematica and other mathematical software packages.
Just as important for this phenomenon is the entry into the field of a large
number of junior-level mathematicians who are completely comfortable with
computer-based tools, and who instinctively look to the computer as the first
step in investigating a mathematical question.

3 A new formula for pi

Perhaps one of the most interesting of the recent computer-discovered mathe-
matical facts is what is now known as the “BBP” formula for π = 3.14159 . . .:
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These infinite series converge quite rapidly—if one adds up just the first four
terms displayed above for each series (i.e., truncating the sums at the · · · sign),
the result will be a value of π correct to six digits.

However, the most remarkable feature of BBP formula is that it permits
one to calculate a string of binary (base 2) or hexadecimal (base-16) digits of
π beginning at an arbitrary position n, without needing to calculate any of the
preceding n − 1 digits. See [4], [9] or [10, pg. 118–125] for details. Indeed, a
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Mathematica implementation of this surprisingly simple scheme is presented in
ANKS (pg. 912).

Recently Tsz-Wo Sze of Yahoo! Cloud Computing demonstrated a closely
related variant of this scheme by calculating binary digits of π beginning at
position two quadrillion [7]. The first 25 binary digits beginning at this point
are: 0111001101100000100101001.

An even more interesting aspect of the BBP formula, one particularly rele-
vant to the present discussion, is the fact that it was discovered by a computer.
Indeed, it may be the first instance in the history of mathematics where a sig-
nificant new formula for π was found by a computer.

This all happened in 1995, when Canadian mathematician Peter Borwein
was considering whether or not it was possible to calculate the n-th digit of a
mathematical constant such as π by some shortcut that avoided the necessity of
computing all digits up to and including the n-th digit. He and Simon Plouffe
found a way to compute the n-th binary digit of the natural logarithm of two,
namely ln 2 = 0.693147 . . ., by manipulating the following well-known formula
for ln 2:

ln 2 =

∞∑
k=1

1

k2k
=

1

2
+

1

3 · 23
+

1

4 · 24
+

1

5 · 25
+ · · · . (4)

After this discovery, Borwein and Plouffe immediately asked whether they
could do the same mathematical “trick” for π. It all depended on finding a sim-
ilar formula for π. Peter Borwein, who was very familiar with the mathematical
literature regarding π, was not aware of any such formula for π, and it seemed
exceedingly unlikely that such a formula would have escaped detection by the
many thousands of great mathematicians who have studied π through the ages.
But Plouffe embarked on a computer search for such a formula, using a 200-digit
computer implementation (provided by the present author) of mathematician-
sculptor Helaman Ferguson’s integer relation “PSLQ” algorithm, which finds
integer linear relations among an input set of numerical values. After several
months of fits and starts, Plouffe and his computer found formula (1). The rest,
as they say, is history.

Since 1995, researchers have discovered similar digit-calculating formulas for
numerous other fundamental constants of mathematics, in most cases by similar
computer searches using the PSLQ algorithm. See [10, Chap. 3] or [7] for details.

4 Ramanujan’s continued fraction

Srinivasa Ramanujan (1887–1920), born to a poor family in India, learned math-
ematics mostly by studying math books on his own. His genius was recognized
by British mathematician G. H. Hardy, who invited him to come work with him
in Cambridge. Ramanujan’s mathematical achievements have been recognized
as among the greatest of all time, in spite of the fact that he died at the tender
age of 32.
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One of the many topics that he addressed in his notebooks is the following
class of continued fractions. Given a, b, η > 0, define

Rη(a, b) =
a

η +
b2

η +
4a2

η +
9b2

η + ...

. (5)

This complicated-looking expression simply means to evaluate the indicated
compound fraction out to some level, and then take the limit as more and more
terms are included. Ramanujan discovered the beautiful fact that

Rη (a, b) +Rη (b, a)

2
= Rη

(
a+ b

2
,
√
ab

)
, (6)

for certain a, b > 0 parameterized by elliptic functions. And indeed this is true
for all a, b > 0, as Berndt notes in his annotation of Ramanujan’s notebook [8].

Just as ANKS was being completed, a group of mathematicians (including
Jonathan Borwein, Richard Crandall, David Borwein, Raymond Mayer and
others) applied the tools of experimental mathematics to study these continued
fractions. This started with a simple attempt to numerically validate (6), which,
in turn, meant numerically computing formula (5).

Unfortunately, a first attempt to numerically compute R1 (1, 1), as a proto-
type problem, failed miserably—after a lengthy computation only three reliable
digits were produced: 0.693 . . .. But researchers recognized this value as close
to the value of ln 2 = 0.693147 . . ., and then discovered that convergence of the
continued fraction is worst when a = b (i.e., the initial problem they selected
was a poor choice).

Eventually a number of very interesting results were obtained, including an
algorithm to compute (5) in the complex plane, and so to determine exactly
when it converged. For instance, with the help of Maple and Mathematica and
a scatter plot, these researchers discovered that the fraction converges and (6)
holds exactly when (a, b) lie in the cardioid defined by |a| + |b| ≥ 2

√
|a||b|.

They then determined an elliptic function representation from which the simple
formula

R1(a, a) = 2

∫ 1

0

t1/a

1 + t2
dt, (7)

true for all nonzero real numbers a, followed easily. No such formula is known
for Rη(a, b) with a 6= b or not real, although striking results have been obtained
in cases such as Rη(ia, ia), for real a, which exhibits true chaos [2].

Study of convergence of these Ramanujan continued fractions was facilitated
by reducing them to the following discrete dynamical system: Given complex
numbers a and b as in (5), set t0 = 1, t1 = 1 and then iterate

tn :=
1

n
+ ωn−1

(
1− 1

n

)
tn−2, (8)
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where ωn = a2 or b2, depending on whether n is even or odd. It can be shown
that Rη(a, b) diverges if and only if the sequence

√
ntn remains bounded.

If one studies this iteration based solely on its numerical values, nothing
much is evident—one only sees that tn → 0 fairly slowly. However, if one looks
at this iteration pictorially, significantly more can be learned. In particular,
if one plots these iterates in the complex plane, scaled by

√
n, with iterations

colored blue or red depending on odd or even n, then some remarkable fine
structure appears—see Figure 1.

With assistance of such plots, the behavior of these iterates (and the Ra-
manujan continued fractions themselves) is now quite well understood. A Cin-
derella applet exploring the dynamics of these iterations is available at http:

//carma.newcastle.edu.au/jon/dynamics.html. When a and b are complex
numbers such that |a| = |b| = 1, a circle appears when either of a, b is not a
root of unity, but k isolated spirals are seen when one of them is a k-th root of
unity (i.e., when a = e2iπ/k for some integer k).

In short, Ramanujan continued fractions and related iterations join the dis-
tinguished category of mathematical objects that have been profitably studied
via computer graphics, in company with Wolfram’s cellular automata, chaotic
sequences, and the Julia-set structures of roots of algebraic equations.

5 Formulas for the Riemann zeta function

The Riemann zeta function, which is defined by the simple formula

ζ(s) =

∞∑
k=0

1

ns
= 1 +

1

2s
+

1

3s
+

1

4s
+ · · · , (9)

is one of the most important objects in modern mathematics, with applications
in physics, probability theory, applied statistics and number theory. A premier
unsolved problem of mathematics, for which the Clay Mathematics Institute has
offered US$1,000,000 for solution, is to rigorously prove the “Riemann hypoth-
esis,” namely the assertion that all of the nontrivial solutions of the equation
ζ(s) = 0 in the complex plane lie precisely on a particular vertical straight line.

Among the many questions explored by mathematicians over the past cen-
tury regarding the Riemann zeta function are whether the following intriguing
formulas, which have been known for several decades, can be generalized:

ζ(2) = 3

∞∑
k=1

1

k2
(
2k
k

) = 3

(
1

2
+

1

4 · 6
+

1

9 · 20
+ · · ·

)
(10)

ζ(3) =
5

2
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k=1

(−1)k+1

k3
(
2k
k
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5

2

(
− 1
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1
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27 · 20
+ · · ·

)
(11)

ζ(4) =
36

17

∞∑
k=1

1

k4
(
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k

) =
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17
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1

1 · 2
+

1

16 · 6
+

1

81 · 20
+ · · ·

)
. (12)
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Figure 1: Dynamics and attractors discovered by plotting
√
ntn for various cases

with |a| = |b| = 1.
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Here the notation
(
n
m

)
is shorthand for the binomial coefficient, namely the

number of combinations of n objects taken m at a time. Do similar formulas
exist for integer arguments greater than four? Numerous mathematicians have
tried to find such formulas, but, until recently, none were known.

In 1997, using a combination of integer relation algorithms, the “Pade ap-
proximation” facility and some other computational techniques available in
Mathematica and similar mathematical software systems, Jonathan Borwein
(Peter Borwein’s brother) and David Bradley discovered the following unantic-
ipated general formula ([11] or [1, pg. 70–77]):

∞∑
k=0

ζ(4k + 3)x4k =
5

2

∞∑
k=1

(−1)k+1

k3
(
2k
k

)
(1− x4/k4)

k−1∏
m=1

(
1 + 4x4/m4

1− x4/m4

)
. (13)

Here the notation
∏k−1
m=1 means the product of the term to the right of

∏
for m

from 1 to k− 1. Formula (13) permits one to read off an infinity of formulas for
ζ(4n+ 3), beginning with formula (11) above when n = 0, simply by comparing
coefficients of x4k on the left-hand side and the right-hand side of (13).

In 2007, following a similar but much more deliberate computer-experimental
procedure, as detailed in [5] or [1, pg. 70–77], a similar general formula was
discovered for ζ(2n+ 2):

∞∑
k=0

ζ(2k + 2)x2k = 3

∞∑
k=1

1

k2
(
2k
k

)
(1− x2/k2)

k−1∏
m=1

(
1− 4x2/m2

1− x2/m2

)
. (14)

As with (13), one can now read off an infinity of formulas, beginning with
formula (10) above when n = 0. This general formula was then proved using
what is known as the Wilf-Zeilberger algorithm [13]. A comparable general
formula for ζ(2n + 4) has also been found, giving formula (12) above when
n = 0, but a similar general formula for all ζ(4n+ 1) is not yet known.

It is worth emphasizing the fact that formula (14) above was both discovered
and proven by computer. There is no reason for human mathematicians to panic,
as considerable human ingenuity was involved in both steps. But this result is a
harbinger of a future in which the computer is as essential to the mathematician,
for both discovery and proof, as a particle collider is to a high-energy physicist,
or as a DNA sequencer is to a molecular biologist.

6 Proof versus experiment

Although Wolfram repeatedly champions the experimental approach in A New
Kind of Science, he also acknowledges that experimental explorations are no
substitute for rigorous proof. This principle has been amply underscored during
the past few years by discoveries of some remarkable examples that serve as
cautionary tales to those who too glibly apply experimental methods.
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Figure 2: Graph of the oscillating function cos(2x)
∏∞
n=1 cos(x/n)

One particularly sobering example is the following:

I =

∫ ∞
0

cos(2x)

∞∏
n=1

cos(x/n) dx, (15)

where
∫∞
0

means the usual signed area under the curve that we study in calculus.
Calculating the numerical integral of this oscillating function (see Figure 2)
to high accuracy is a nontrivial challenge, but can be done using a scheme
described in [6]. When this integral was first computed to 20-digit accuracy, its
value appeared to be π/8 = 0.392699 . . .. But when more than 50 digits were
obtained, upon careful comparison with the numerical value of π/8:

I = 0.392699081698724154807830422909937860524645434187231595926 . . .

π/8 = 0.392699081698724154807830422909937860524646174921888227621 . . . ,

it is clear that the two values disagree beginning with the 43rd digit! In other
words, the integral I is not π/8. At first the authors of this study felt that there
must be some “bugs” in the computer programs calculating the integral, but
none were found.

Richard Crandall [12] later explained this mystery. In the course of analyzing
physically motivated “running out of fuel” random walks, he showed that π/8
is given by the following very rapidly convergent series expansion, of which the
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integral (15) above is merely the first term:

π

8
=

∞∑
m=0

∫ ∞
0

cos[2(2m+ 1)x]

∞∏
n=1

cos(x/n) dx. (16)

As mentioned above, one term of this series is accurate to 43 digits; two terms
are accurate to more than 500 digits; three series suffice for at least 8000 digits,
and so on.

7 Conclusion

Considerable progress has been made since the publication of AKNS in identify-
ing opportunities and techniques for experimental mathematics. New formulas
have been discovered, interesting features have been identified in plots of math-
ematical structures, and computer-based techniques have been developed to
prove certain types of results, as well as to discover them in the first place.

However, examples such the one mentioned in the previous section, where
mathematical objects differ significantly from what one might think after per-
forming an initial computation, draw attention to the fact that there has not
yet been substantial and intellectually rigorous progress in the way experimental
mathematics is presented in research papers, textbooks and classroom instruc-
tion, or in how the mathematical discovery process is organized. This is an
arena where works such as A New Kind of Science can have significant impact.
The present author, for one, looks forward to this dialogue. See [3] for more
discussion.
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